Данный ресурс предназначен для тех, кому интересна тема создания музыки на компьютере

Главная    Полезные материалы    Программы для создания музыки    Учебники    Радио    Карта сайта

Сущность наиболее важных звуковых эффектов


Звуковые эффекты могут быть созданы аппаратным путем, и тогда их можно использовать в реальном времени, как, например, это сделано в высококачественных звуковых картах. Для этого в их состав включены цифровые сигнальные процессоры. Цифровой сигнальный процессор (Digital Signal Processor — DSP) позволяет обрабатывать звуковые сигналы в реальном времени. В основе его принципа действия лежит аналого-цифровое преобразование сигнала с последующей обработкой, основанной на нескольких алгоритмах цифровой фильтрации и цифровой задержки. Правда, полноценный DSP чрезвычайно дорого стоит, поэтому применяется только в специализированных устройствах профессионального назначения. Сигнальные процессоры мультимедийных звуковых карт представляют собой устройства, значительно упрощенные по сравнению со своими старшими братьями. Обычно они ориентированы на создание эффектов в играх и обладают ограниченными возможностями с точки зрения применения эффектов в домашней музыкальной студии.

Выбор эффектов и управление их параметрами производится по MIDI с помощью контроллеров. В составе большинства музыкальных редакторов имеется соответствующий интерфейс, позволяющий управлять контроллерами эффектов различными способами. Чаще всего это делается путем "рисования" графика изменения параметра эффекта. Контроллер эффекта может быть также ассоциирован с одним из регуляторов виртуального микшера, входящего в состав музыкального или звукового редактора.

В компьютерных студиях звуковые эффекты часто создаются программным способом. И реализация эффектов, и управление ими осуществляется с помощью звуковых редакторов. Обработке подвергается заранее записанный в цифровой форме звуковой сигнал. Недостатком программной реализации некоторых звуковых эффектов является невозможность их использования в реальном времени, в процессе записи. Достоинство заключается в том, что отказ от обработки в реальном времени позволяет применять самые сложные алгоритмы, требующие больших временных затрат, поэтому число различных звуковых эффектов и число вариантов каждого эффекта в этом случае значительно превышает то, что достижимо при аппаратной реализации. Кроме того, имеется возможность практически неограниченного "вложения" эффектов один в другой. Предел устанавливается не техническими (точнее, не математическими) возможностями, а здравым смыслом и эстетическими критериями. Основной способ применения эффектов в Cubase SX — их применение в реальном времени. О том, как воспользоваться ими, мы расскажем на страницах книги. Сначала нужно получить хотя бы исходные представления о сущности основных звуковых эффектов: вибрато, тремоло, дилэй (delay), флэнжер (flanger), фэйзер (phaser), xopyc (chorus), реверберация (reverb).

Вибрато

В самом общем смысле суть эффекта вибрато заключается в периодическом изменении одного из параметров звукового колебания: амплитуды, частоты или фазы. Изменение параметра происходит с очень малой частотой — единицы герц. Различают амплитудное, частотное и фазовое вибрато. В любом случае результатом является обогащение спектра исходного звукового колебания. Читатели, знакомые с основами радиотехники, понимают, что, по сути дела, происходит модуляция звукового колебания низкочастотным сигналом. Законы физики неумолимы — спектр сигнала при этом действительно расширяется.

Кроме того, имеется еще и тембровое вибрато, о котором мы поговорим чуть позже.

Как и многие другие электронные звуковые эффекты, вибрато имеет свои естественные прототипы, уходящие корнями в народную и классическую инструментальную и вокальную музыку.

Владение приемом вибрато отличает очень хорошего певца от просто хорошего. Скрипка в руках талантливого музыканта потому и звучит так божественно, что, совершая едва заметные перемещения вдоль грифа пальцев, прижимающих струны, он осуществляет частотное вибрато. Тремоло (частный случай амплитудного вибрато) является основным приемом игры на мандолине.

Первоначально словом "вибрато" именовалась модуляция любого параметра звукового колебания. Но со временем некоторые из разновидностей этого эффекта получили свое название. Во многих публикациях по электронной музыке теперь под вибрато подразумевают только вибрато частотное. На наш взгляд это не совсем верно, следует различать амплитудное вибрато, частотное вибрато и тембровое вибрато. У фазового вибрато имеется специальное название — фэйзер (phaser).

Амплитудное вибрато и тремоло

Амплитудное вибрато включает в себя собственно амплитудное вибрато и тремоло.

Сущность амплитудного вибрато состоит в периодическом изменении амплитуды звукового сигнала. Частота, с которой это происходит, должна быть очень небольшой (от долей герца до 10—12 Гц). Если частота вибрато находится вне этих пределов, то необходимый эстетический эффект не достигается.

Тембр сигнала с амплитудным вибрато богаче по сравнению с тембром исходного сигнала. С таким спектром можно проделывать различные манипуляции, например, изменять уровни спектральных составляющих с помощью фильтров.

Степень проявления эффекта характеризуется глубиной вибрато: m = AS/S, где AS — максимальное изменение амплитуды сигнала с вибрато, S — амплитуда исходного сигнала. Диапазон допустимых значений глубины вибрато — от О до 1. Оптимальная с точки зрения художественного результата частота амплитудного вибрато составляет 6—8 Гц.

Особой разновидностью амплитудного вибрато является тремоло. Отличительные признаки тремоло: относительно высокая частота вибрации (10—12 Гц), максимальная глубина (т = 1) и импульсная форма результирующего сигнала.

В аналоговых устройствах амплитудное вибрато реализуется с помощью перемножителей сигналов. Существует много различных принципиальных схем устройств вибрато. Основная проблема аналоговых устройств — неполное подавление управляющего сигнала. При большой глубине вибрато это проявляется в виде ясно прослушивающегося "стука" с частотой модуляции.

Компьютерные музыканты встретятся с двумя вариантами реализации амплитудного вибрато: аппаратным и программным. Аппаратный способ предполагает наличие в структуре звуковой карты усилителей с управляемым коэффициентом усиления. Программный способ заключается в перемножении значений цифровых отсчетов звуковых колебаний со значениями отсчетов функции (обычно синусоидальной), описывающей управляющий сигнал.

При обработке вокальных партий нужно пользоваться амплитудным вибрато очень осторожно, глубина его не должна быть большой, а тремоло совсем недопустимо.

Частотное вибрато

Суть частотного вибрато заключается в периодическом изменении частоты звукового колебания.

В музыке частотное вибрато получило широкое распространение лишь после создания электронных музыкальных инструментов. Реализовать этот эффект на адаптеризированных акустических инструментах довольно сложно. Правда, у соло-гитары конструкция предоставляет такую возможность. Натяжение всех струн можно одновременно изменять с помощью специального механизма: подвижной подставки для крепления струн и рычага. Частотное вибрато здесь исполняется вручную.

Реализация частотного вибрато в электромузыкальных инструментах и синтезаторах проста и естественна. Работу всех узлов электронных музыкальных синтезаторов как аппаратных, так и реализованных программным путем, синхронизирует опорный генератор. Если изменять его частоту, то будут изменяться частоты и всех синтезируемых колебаний. В радиотехнике этот процесс называется частотной модуляцией. Если изменение частоты производится по периодическому закону, то в результате получается частотное вибрато. По существу дела, при частотном вибрато также расширяется спектр исходного сигнала, тембр перестает быть постоянным, а периодически изменяется во времени.

Красивое звучание получается только в том случае, когда глубина частотного вибрато (относительное изменение частоты звука) невелика. Как известно, в соответствии с хроматической гаммой введена единица музыкальных интервалов, в 1200 раз меньшая, чем октава — цент. Интервал между соседними полутонами в темперированной гамме равен в точности 100 центам. Колебание высоты тона при частотном вибрато не должно превышать нескольких десятков центов. В противном случае создается впечатление нарушения строя инструмента.

Частотное вибрато используется и само по себе и входит составной частью в более сложные звуковые эффекты.

Тембровое вибрато

Эффект тембрового вибрато также предназначен для изменения спектра звуковых колебаний. Физическая сущность этого эффекта состоит в том, что исходное колебание с богатым тембром пропускается через полосовой частотный фильтр, у которого периодически изменяется либо частота настройки, либо полоса пропускания, либо по различным законам изменяются оба параметра. При этом фильтр выделяет из всего спектра исходного колебания те частотные составляющие, которые попадают в "мгновенную" полосу его пропускания. Так как полоса пропускания "дышит" по ширине и "гуляет" по частоте, то тембр сигнала периодически изменяется.

Кроме автоматического тембрового вибрато используют еще и ручное (чаще даже "ножное" — с управлением от педали). Такой вариант эффекта известен под названиями "вау-вау".

Необыкновенно красиво звучит электрогитара, сигнал которой пропущен через блок тембрового вибрато, если цикл перестройки фильтра синхронизирован с моментом возникновения колебания струны. Звук каждого очередного взятого аккорда перетекает от одного края своей тембральной области до другого.

Если звуковая карта содержит перестраиваемые резонансные фильтры или хотя бы фильтры нижних частот с перестраиваемой частотой среза, то этот эффект может быть создан и аппаратным способом в реальном времени.

Эффекты, основанные на задержке сигнала

В этом разделе мы познакомим вас с сущностью ряда эффектов, основанных на задержке сигнала, таких как:
  • Дилэй (Delay)
  • Флэнжер (Flanger)
  • Фэйзер (Phaser)
  • Хорус (Chorus)
  • Реверберация (Reverb)
О реализации данных эффектов в Cubase SX речь пойдет в следующей статье.

Дилэй

Необходимость в эффекте дилэй (delay) возникла с началом применения стереофонии. Сама природа слухового аппарата человека предполагает в большинстве ситуаций поступление в мозг двух звуковых сигналов, отличающихся временами прихода. Если источник звука находится "перед глазами": на перпендикуляре, проведенном к линии, проходящей через уши, то прямой звук от источника достигает обоих ушей в одно и то же время. Во всех остальных случаях расстояния от источника до ушей различны, поэтому одно либо другое ухо воспринимает звук первым. Проведем несложные расчеты. Время задержки (разницы во времени приема сигналов ушами) будет максимальным в том случае, когда источник расположен напротив одного из ушей. Так как расстояние между ушами — около 20 см, то максимальная задержка может составлять около 6 мс. Этим величинам соответствует волна звукового колебания с частотой около 1,7 кГц. Для более высокочастотных звуковых колебаний длина волны становится меньше, чем расстояние между ушами, и разница во времени приема сигналов ушами становится неощутимой. Предельная частота колебаний, задержка которых воспринимается человеком, зависит от направления на источник. Она растет по мере того, как источник звука смещается от точки, расположенной напротив одного из ушей, к точке, расположенной перед человеком.

Дилэй применяется прежде всего в том случае, когда запись голоса или акустического музыкального инструмента, выполненную с помощью единственного микрофона, "встраивают" в стереофоническую композицию. Этот эффект служит основой технологии создания стереозаписей.

Но дилэй может применяться и для получения эффекта однократного повторения каких-либо звуков. Величина задержки между прямым сигналом и его задержанной копией в этом случае выбирается большей, чем естественная задержка в 8 мс. Какая именно задержка должна быть выбрана? Ответ на этот вопрос определяется несколькими факторами. Прежде всего, следует руководствоваться эстетическими критериями, художественной целью и здравым смыслом. Для коротких и резких звуков время задержки, при котором основной сигнал и его копия различимы, меньше, чем для протяженных звуков. Для произведений, исполняемых в медленном темпе, задержка может быть больше, чем для быстрых композиций.

При определенных соотношениях громкостей прямого и задержанного сигналов может иметь место психоакустический эффект изменения кажущегося расположения источника звука на стереопанораме. Согласитесь, что, например, "перескоки" рояля с места на место по ходу прослушивания произведения очень трудно обосновать как с эстетических позиций, так и с точки зрения верности воспроизведения реального звучания. Как и любой эффект, дилэй нужно применять в разумных пределах и не обязательно на протяжении всей композиции.

Этот эффект реализуется с помощью устройств, способных осуществлять задержку акустического или электрического сигналов. Таким устройством сейчас чаще всего служит цифровая линия задержки, представляющая собой цепочку из элементарных ячеек — триггеров задержки. Для наших целей достаточно знать, что принцип действия триггера задержки сводится к следующему: символ двоичного сигнала, поступивший в некоторый тактовый момент на его вход, появится на его выходе не мгновенно, а только в очередной тактовый момент. Общее время задержки в линии тем больше, чем больше триггеров задержки включено в цепочку, и тем меньше, чем меньше тактовый интервал (чем больше тактовая частота). В качестве цифровых линий задержки можно использовать запоминающие устройства. Известны специальные алгоритмы адресации ячеек запоминающих устройств, обеспечивающие "скольжение" информации "вдоль" адресного пространства. Разумеется, для применения цифровой линии задержки сигнал должен быть сначала преобразован в цифровую форму. А после прохождения копией сигнала линии задержки происходит цифроаналоговое преобразование. Исходный сигнал и его задержанная копия могут быть как раздельно направлены в различные стереоканалы, так и смешаны в различных пропорциях. Суммарный сигнал можно направить либо в один из стереоканалов, либо в оба.

В звуковых редакторах дилэй реализуется программным (математическим) путем за счет изменения относительной нумерации отсчетов исходного сигнала и его копии.

Возможны такие, например, разновидности задержки, при которых формируются несколько задержанных на различное время копий сигнала. Реализация эффекта delay в программе Cubase SX рассмотрена в главе 13.

В виртуальных дилэях, как и в их аппаратных прототипах, обязательно имеются регуляторы глубины и частоты модуляции задержанного сигнала, а также регулятор коэффициента обратной связи (feedback). Сигнал с выхода подается опять в линию задержки. Время затухания устанавливается регулятором обратной связи. Чтобы однократное повторение превратилось в настоящее повторяющееся эхо, коэффициент обратной связи надо увеличить. Как правило, и в реальных, и в виртуальных устройствах имеется регулятор, при помощи которого можно подобрать такое время задержки, чтобы оно соответствовало темпу композиции.

Флэнжер и фэйзер

В основу звуковых эффектов флэнжер (flanger) и фэйзер (phaser) также положена задержка сигнала.

В аналоговых устройствах флэнжер реализуется при помощи гребенчатых фильтров, которые могут строиться на линиях задержки. Характерная форма амплитудно-частотной характеристики (АЧХ) создается за счет сдвига фазы при распространении сигнала в линии задержки и сложения реализаций задержанного сигнала.

Меняя параметры гебенчатого фильтра, можно в значительной степени изменять первоначальный тембр звука.

Гребенчатая АЧХ фильтра обусловлена тем, что для некоторых частот задержанные копии сигнала складываются в фазе и поэтому усиливаются, для других частот — в противофазе и поэтому взаимоуничтожаются. Периодическая структура АЧХ определяется периодическим характером составляющих аудиосигнала (синусоид).

Совершенно не случайно в старые времена флэнжером часто пытались заменить реверберацию. Реверберация возникает за счет многократного отражения звуковых волн от стен, потолка и пола помещения. При этом звуковые колебания по пути к слушателю претерпевают различные по величине задержки (фазовые сдвиги). Имеет место интерференция колебаний. Если исследовать любое помещение с заметными реверберационными свойствами, то обнаружится, что его АЧХ имеет гребенчатую форму.

Как мы уже сказали, дилэй имитирует эффект неодновременного восприятия мозгом человека звуковых сигналов. Эффект повторного звучания может быть вызван и распространением звука от источника к приемнику различными путями (например, звук может приходить, во-первых, напрямую и, во-вторых, отразившись от препятствия, находящегося чуть в стороне от прямого пути). В том и в другом случаях время задержки остается постоянным. В реальной жизни этому соответствует маловероятная ситуация, когда источник звука, приемник звука и отражающие предметы неподвижны относительно друг друга. При этом частота звука не изменяется, каким бы путем и в какое бы ухо он ни приходил.

Если же какой-либо из трех элементов подвижен, то частота принимаемого звука не может оставаться той же, что и частота звука переданного. Это и есть проявление того самого эффекта Доплера, который в учебниках традиционно поясняется на примере изменения высоты звучания гудка движущегося паровоза.

Итак, реальные музыкальные звуки при распространении претерпевают не только расщепление на несколько звуковых волн и различную (для каждой из них) задержку, но и неодинаковое изменение частот для разных спектральных составляющих.

И флэнжер, и фэйзер имитируют (каждый по-своему) проявления взаимного перемещения упомянутых трех элементов: источника, приемника и отражателя звука. По сути дела, оба эффекта представляют собой сочетание задержки звукового сигнала с частотной или фазовой модуляцией. Разница между ними чисто количественная. Флэнжер отличается от фейзера тем, что для первого эффекта время задержки копии (или времена задержек копий) и изменение частот сигнала значительно большее, чем для второго. Образно говоря, флэнжер наблюдался бы в том случае, когда певец мчался бы к зрителю, сидящему в зале, со скоростью автомобиля. А вот для того чтобы ощутить фэйзер в его, так сказать, первозданном виде, движущегося источника звука не требуется, зрителю достаточно часто-часто вертеть головой из стороны в сторону.

Упомянутые количественные отличия эффектов приводят и к отличиям качественным: во-первых, звуки, обработанные ими, приобретают различные акустические и музыкальные свойства, во-вторых, эффекты реализуются различными техническими средствами.

Значения времени задержек, характерные для флэнжера, существенно превышают период звукового колебания, поэтому для реализации эффекта используют многоразрядные и многоотводные цифровые линии задержки. С каждого из отводов снимается свой сигнал, который в свою очередь подвергается частотной модуляции.

Для фэйзера, наоборот, характерно столь малое время задержки, что оно оказывается сравнимо с периодом звукового колебания. При таких малых относительных сдвигах принято говорить уже не о задержке копий сигнала во времени, а о разности их фаз. Если эта разность фаз не остается постоянной, а изменяется по периодическому закону, то мы имеем дело с эффектом Phaser. Так что можно считать фэйзер предельным случаем флэнжера. Но если внимательно прочитать еще раз этот абзац, то можно понять, что фэйзер — это фазовое вибрато.

Чего только ни придумывали в относительно старые времена, чтобы реализовать эти эффекты!

Например, чтобы получить флэнжер, вместо одной акустической системы использовали несколько систем, размещенных на различных расстояниях от слушателей. В определенные моменты производили поочередное подключение источника сигнала к акустическим системам таким образом, что создавалось впечатление приближения или удаления источника звука. Задержку звука выполняли и с помощью магнитофонов со сквозным трактом запись/воспроизведение. Одна головка записывает, другая — воспроизводит звук с задержкой на время, необходимое для перемещения ленты от головки к головке. Для частотной модуляции особых мер можно было и не придумывать. Каждому аналоговому магнитофону присущ естественный недостаток, называемый детонацией, которая проявляется в виде "плавания звука". Стоило чуть-чуть специально усилить этот эффект, изменяя напряжение, питающее двигатель, и получалась частотная модуляция.

Для реализации фэйзера методами аналоговой техники использовали цепочки электрически управляемых фазовращателей. А иногда можно было наблюдать и такую картину: в акустической системе, подключенной к электромузыкальному инструменту или электрогитаре, вдруг начинало вращаться что-то вроде вентилятора. Звук пересекался подвижными лопастями, отражался от них, получалась фазовая модуляция. Представляете, сколько усилий предпринималось только ради того, чтобы оживить тембр звучания инструментов! Современные звуковые редакторы позволяют без особых усилий со стороны пользователя реализовать гигантское количество различных звуковых эффектов.

Хорус

Хорус (chorus) проявляется как эффект исполнения одного и того же звука или всей партии не одним-единственным инструментом или певцом, а несколькими. Искусственно выполненный эффект является моделью звучания настоящего хора. В том, что хоровое пение или одновременное звучание нескольких музыкальных инструментов украшает и оживляет музыкальное произведение, сомнений, вероятно, нет ни у кого.

С одной стороны, голоса певцов и звуки инструментов при исполнении одинаковой ноты должны звучать одинаково, а к этому стремятся и музыканты, и дирижер. Но из-за индивидуальных различий источников звук все равно получается разным. В пространстве, тракте звукоусиления и в слуховом аппарате человека эти немного неодинаковые колебания взаимодействуют, образуются так называемые биения. Спектр звука обогащается и, самое главное, течет, переливается.

Можно считать, что предельным случаем хоруса является одновременное звучание слегка отличающихся по частоте двух источников — унисон.

Унисон был известен задолго до появления синтезаторов. В основе сочного и живого звучания двенадцатиструнной гитары и аккордеона лежит унисон. В аккордеоне, например, звук каждой ноты генерируется узлом, содержащим два источника колебаний (язычка), специально настроенных "в разлив" — с небольшой (в единицы герц) разницей в частотах. В двенадцатиструнной гитаре звук извлекается одновременно из пары струн. Разница в частотах образуется естественным путем из-за невозможности идеально одинаково настроить струны инструмента.

Вот именно наличие этой ничтожной разницы в частотах голосов певцов или инструментов и служит причиной красивого звучания унисона (для двух голосов) или хоруса (для более двух голосов).

В цифровых электромузыкальных инструментах, напротив, частоты пары вторичных генераторов могут быть получены абсолютно равными друг другу. В таком звучании отсутствует жизнь, потому что оно слишком правильное. Для оживления электронного звучания и создания впечатления игры нескольких инструментов и используют хорус.

Существует довольно много разновидностей алгоритмов хоруса. Но все они сводятся к следующему:
  • исходный сигнал разделяется на два или несколько каналов;
  • в каждом из каналов спектр сигнала сдвигают по частоте на определенную величину. Частотные сдвиги очень малы, они составляют доли Гц и в ряде случаев изменяются во времени;
  • в каждом из каналов сигнал немного задерживают во времени, причем, величина задержки может меняться (поэтому хорус относится к числу эффектов, основанных на задержке сигнала);
  • каждый из каналов позиционирует в свою точку на стереопанораме; 
  • сигналы, полученные таким способом, складывают.
В итоге получается сигнал, спектр которого непрерывно изменяется, причем период полного цикла этого изменения столь велик, что повторяемость спектральных свойств сигнала не ощущается.

Хорус настолько украшает звучание инструментов, что ныне он стал одним из эффектов, имеющихся практически в каждом синтезаторе и многих звуковых картах.

Обработка аудиосигнала звуковыми редакторами позволяет получить массу разновидностей этого эффекта. Вместе с тем, не следует чрезмерно увлекаться им, так как это может привести к ухудшению разборчивости звучания голоса, к "засорению" акустической атмосферы композиции.

Реверберация

Реверберация (reverb) относится к наиболее интересным и популярным звуковым эффектам. Сущность реверберации состоит в том, что исходный звуковой сигнал смешивается со своими копиями, задержанными относительно него на различные интервалы времени. Этим реверберация напоминает ди-лэй. Отличие заключается в том, что при реверберации число задержанных копий сигнала может быть значительно больше, чем для дилэя. Теоретически число копий может быть бесконечным. Кроме того, при реверберации чем больше время запаздывания копии сигнала, тем меньше ее амплитуда (громкость). Эффект зависит от того, каковы временные промежутки между копиями сигналов и какова скорость уменьшения уровней их громкости. Если промежутки между копиями малы, то получается собственно эффект реверберации. Возникает ощущение объемного гулкого помещения. Звуки музыкальных инструментов становятся сочными, объемными, с богатым тембровым составом. Голоса певцов приобретают напевность, недостатки, присущие им, становятся малозаметными.

Если промежутки между копиями велики (более 100 мс), то правильнее говорить не об эффекте реверберации, а об эффекте "эхо". Интервалы между соответствующими звуками при этом становятся различимыми. Звуки перестают сливаться, кажутся отражениями от удаленных преград.

Первым ушей слушателя достигает прямой звук. Этот сигнал приходит к слушателю по кратчайшему пути. Поэтому интенсивность его больше, чем интенсивности других сигналов. Прямой сигнал несет информацию только о расположении источника звука справа или слева от слушателя.

Несколько отстав от прямого сигнала, затем приходят ранние (первичные) отражения. Эта составляющая звукового поля претерпевает одно — два отражения от ограждающих поверхностей (стен, пола, потолка). Взаимодействуя с поверхностями, звуковая волна не только отражается от них, но и отдает им часть своей энергии. Энергия расходуется на нагрев поверхностей. Поэтому интенсивность ранних отражений меньше (но не намного) интенсивности прямого сигнала. Ранние отражения проявляются как ясно различимые эхо-сигналы. Временные промежутки между ними достаточно велики, т. к. велики разности длин путей, по которым сигналы доходят до слушателя. Например, волна может отразиться от боковой или от тыльной стены. Возможно, что часть волн, относящихся к ранним отражениям, испытают не одно, а несколько отражений. Ранние отражения несут в себе информацию не только о месте расположения исполнителя, но и о размерах помещения. Именно данные отражения вносят наибольший вклад в пространственное ощущение акустики зала. К ранним отражениям относят те копии первичного сигнала, которые отстают от прямого сигнала не более, чем на 60 мс.

Вторичные и последующие (поздние) отражения — это звуковые волны, многократно отраженные от каждой из поверхностей. По мере увеличения числа переотражений интенсивность аудиосигнала заметно уменьшается. Кроме того, изменяется спектральный состав звуковых колебаний. Дело в том, что из-за различий в конфигурации отражающих поверхностей л в свойствах материалов покрытий разные спектральные составляющие аудиосигнала отражаются не одинаково. Какие-то из них поглощаются сильнее, поэтому затухают быстрее.

По мере возрастания номеров вторичных отражений они рассеиваются, их число увеличивается. Постепенно они перестают восприниматься как отдельные звуки, сливаются в один сплошной постепенно затухающий отзвук. Это и есть собственно реверберация.

Теоретически затухание звука длится бесконечно. На практике, для того чтобы можно было сравнивать между собой различные реверберационные процессы (а главное реверберационные свойства помещений), введено понятие времени реверберации. Время реверберации — это такое время, за которое уровень реверберирующего сигнала уменьшается на 60 дБ.

Основным элементом, реализующим эффект реверберации, является устройство, создающее эхо-сигнал.

Интересна история развития таких устройств. Первоначально радиостудии и солидные концертные залы содержали эхо-камеры. Эхо-камера представляет собой комнату с отражающими стенами, в которую помещен источник звукового сигнала (громкоговоритель) и приемник (микрофон). По сути дела, такая эхо-камера является уменьшенной моделью реального зрительного зала, в котором не всегда удается создать необходимую акустическую атмосферу. В эхо-камере с трудом, но можно было в некоторых пределах управлять распределением интенсивностей и времен распространения переотраженных сигналов, устанавливая отражающие или поглощающие звук перегородки. Преимущество эхо-камеры состоит в том, что затухание звука происходит в ней естественным путем (что очень трудно обеспечить другими способами имитации эффекта реверберации). В то время как звук продолжает реверберировать в трех измерениях, волна разбивается на множество отражений, которые достигают микрофона во все более уменьшающиеся промежутки времени задолго до того, как звук полностью затихнет. Недостатки эхо-камер связаны с их относительно малыми размерами, при этом вследствие собственных резонансов помещения спектр сигнала искажается в области средних частот. Определенную проблему представляет надежная звукоизоляция помещения эхо-камеры. Но самое главное заключается в том, что эхо-камера не может служить распространенным инструментом получения искусственной реверберации, так как она слишком дорога и громоздка.

Наряду с эхо-камерами для имитации реверберации использовали стальные пластины, точнее довольно-таки большие листы. Колебания в них вводили и снимали с помощью устройств, по конструкции и принципу действия похожих на электромагнитные головные телефоны. Для получения удовлетворительной равномерности амплитудно-частотной характеристики толщина листа должна быть выдержана с точностью, которую не позволяют достичь обычные технологии проката стали. Реверберация здесь была не трехмерной, а плоской. Сигнал имел характерный металлический призвук.

В середине 60-х годов XX века для получения эффекта реверберации стали применять пружинные ревербераторы. С помощью электромагнитного преобразователя, соединенного с одним из концов пружины, в ней возбуждаются механические колебания, которые с задержкой достигают второго конца пружины, связанного с датчиком. Эффект повторения звука обусловлен многократным отражением волн механических колебаний от концов пружины.

Качество звука в пружинном ревербераторе чрезвычайно низкое. Пружина воспринимает любые колебания воздуха и пола, между акустической системой и пружиной существует практически неустранимая обратная связь, звук имеет ярко выраженную "металлическую" окраску. Время реверберации не регулируется.

На смену этим несовершенным устройствам пришли ревербераторы магнитофонные. Принцип формирования в них эхо-сигнала состоит в том, что исходный сигнал записывается на ленту записывающей магнитной головкой, а через время, необходимое для перемещения данной точки ленты к воспроизводящей головке, считывается ею. Через цепь обратной связи уменьшенный по амплитуде задержанный сигнал вновь подается на запись, что и создает эффект многократного повторения звука с постепенным затуханием. Качество звука определяется параметрами магнитофона. Недостаток магнитофонного ревербератора заключается в том, что при приемлемых скоростях протяжки ленты удается получить только эффект эха. Для получения собственно реверберации требуется либо еще сильнее сблизить магнитные головки (чего не позволяет сделать их конструкция), либо значительно увеличить скорость протяжки ленты.

С развитием цифровой техники и появлением интегральных микросхем, содержащих в одном корпусе сотни и тысячи цифровых элементов задержки, появилась возможность создавать высококачественные цифровые ревербераторы. В таких устройствах сигнал может быть задержан на любое время, необходимое как для получения реверберации, так и для получения эха. Ревербератор отличается от цифрового устройства, реализующего дилэй, только тем, что содержит обратную связь (feedback), необходимую для формирования затухающих повторений сигнала.

Цепь обратной связи отсылает часть сигнала с выхода обратно в линию задержки, тем самым получается повторяющееся эхо. Коэффициент обратной связи должен быть меньше единицы, иначе каждое новое эхо будет возрастать по уровню, а не затухать. Может получиться эффект, подобный самовозбуждению акустической системы.

В некоторых виртуальных ревербераторах предусмотрен модулятор фазы. Его действие проявляется в том, что при коротком времени затухания возникает едва заметное изменение тона.

В звуковых картах реверберация, в конечном счете, основана именно на цифровой задержке сигналов. Поэтому может показаться лишним рассказ об остальных способах создания этого эффекта. Но в наши дни не счесть звуковых редакторов, в которые встроена та самая эхо-камера. Конечно, не само гулкое помещение втиснуто в компьютер, а его математическая модель. Для чего это понадобилось делать? Эхо-камера принципиально отличается от всех остальных устройств тем, что реверберация в ней настоящая: трехмерная, объемная. Во всех же остальных устройствах это и не реверберация даже, а ее плоское, двумерное (а то и одномерное) подобие. Модель эхо-камеры позволяет воссоздавать акустику любого помещения. Она даже лучше, чем настоящая эхо-камера, потому что допускает оперативное изменение размеров моделируемого помещения и отражающих свойств стен, пола, потолка. Более того, это не одна, а целых две эхо-камеры, с отдельно устанавливаемыми координатами источников и приемников звука. И это еще не все. Во многих программах, предназначенных для синтеза голосов новых музыкальных инструментов, смоделирован и эффект реверберации, как бы реализуемый с помощью того самого стального листа. Наблюдая такое развитие средств реверберации, можно предположить, что когда-нибудь появятся и математические модели пружинных и магнитофонных ревербераторов. Ведь совсем не исключено, что есть люди, испытывающие ностальгические чувства по отношению к звукам музыки, окрашенным дребезгом пружин или шипением магнитной ленты.

Варианты виртуальных ревербераторов, реализованных в программе Cubase SX, рассмотрены в следующей главе.

Дистошн

Дистошн (distortion) — преднамеренное искажение формы аудиосигнала, придающее ему резкий, скрежещущий оттенок. Чаще всего дистошн применяется в качестве гитарного эффекта. Получается перегрузкой усилителя вплоть до появления в усилителе ограничений и даже его самовозбуждения. Благодаря этому сигнал становится похож на прямоугольный, отчего в нем появляется большое количество новых гармоник, резко расширяющих спектр. Этот эффект применяется в нескольких вариациях (fuzz, overdrive и т. п.), различающихся:
  • способом ограничения сигнала (обычное или сглаженное, весь спектр или полоса частот, весь амплитудный диапазон или его часть);
  • соотношением исходного и искаженного сигналов в выходном миксе;
  • частотными характеристиками усилителей (наличие/отсутствие фильтров на выходе).
Варианты эффекта дистошн, реализованные в программе Cubase SX, рассмотрены в следующей главе.

Вокодер

Вокодер (voice coder) — устройство синтеза речи на основе произвольного входного сигнала с богатым спектром. Речевой синтез реализуется обычно при помощи формантных преобразований: выделение из сигнала с достаточным спектром нужного набора формант с нужными соотношениями придает сигналу свойства соответствующего гласного звука. Изначально вокодеры использовались для передачи кодированной речи. Путем анализа исходного речевого сигнала из него выделяется информация об изменении положений формант при переходе от звука к звуку. Эта информация кодируется и передается по линии связи, а на приемном конце блок управляемых фильтров и усилителей синтезирует речь заново.

Подавая на блок речевого синтеза сигнал, например электрогитары, и произнося слова в микрофон блока анализа, можно получить эффект "разговаривающей гитары". При подаче сигнала с синтезатора получается "голос робота". А если подать сигнал, близкий по спектру к колебаниям голосовых связок, но отличающийся по частоте, то изменится регистр голоса — мужской на женский или детский, и наоборот.

Виртуальный вокодер, входящий в состав Cubase SX, рассмотрен в следующей главе.

Pitch Shifter — изменение высоты тона

Большинство реальных и виртуальных устройств обработки звука имитируют эффекты, которые существуют в природе. Но устройства изменения высоты тона (Pitch Shifter) относятся к совершенно особому типу процессоров, так как тот сигнал, что получается в результате их работы, не.имеет аналога в окружающем мире.

Pitch Shifter делает интересное преобразование: он позволяет получить копию входного сигнала, но высота тона этой копии может быть изменена на величину от нескольких центов до октавы и более.

Принцип действия Pitch Shifter в общем заключается в том, что сигнал записывается в память с фиксированной скоростью, а считывание может производиться быстрее или медленнее — в зависимости от того, вверх или вниз относительного входного сигнала должен быть изменен тон.

Сигнал с измененной высотой тона может быть задержан по отношению к входному. Это используется для более натурального имитирования искусственного унисона: два инструмента играют одно и то же, но есть небольшая разница во времени и высоте.

На этом позвольте завершить рассказ о сущности основных эффектов, имеющихся в музыкальных и звуковых редакторах.


Сущность наиболее важных обработок >>>

<<< Оглавление




Данный ресурс создан исключительно с целью помочь начинающим музыкантам создавать свою музыку.
Вы всегда можете добавить, изменить или опровергнуть информацию, размещенную здесь.
Главная    Полезные материалы    Программы для создания музыки    Учебники    Радио    Карта сайта
создание музыки основы создания музыки звуковая карта для создания музыки программа для создания музыки программа создания музыки на компьютере правила создания музыки сэмплы скачать бесплатные сэмплы скачать бесплатно программу создания музыки fl studio fruity loops виртуальное создание музыки VST плагины vst плагины скачать бесплатно уроки по созданию музыки скачать программу для создания музыки создание музыки скачать бесплатно создание музыки бесплатно создание электронной музыки создание электронной музыки на компьютере создание музыки на компьютере бесплатные программы для создания музыки бесплатные сэмплы создание транс музыки легкие программы для создания музыки синтезаторы для создания музыки создание музыки для новичков cubase создание музыки на компьютере обучение бесплатные VST плагины скачать создание музыки русская программа для создания музыки